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Abstract

Monocular 3D reconstruction of articulated object cat-
egories is challenging due to the lack of training data and
the inherent ill-posedness of the problem. In this work we
use video self-supervision, forcing the consistency of con-
secutive 3D reconstructions by a motion-based cycle loss.
This largely improves both optimization-based and learning-
based 3D mesh reconstruction. We further introduce an in-
terpretable model of 3D template deformations that controls
a 3D surface through the displacement of a small number
of local, learnable handles. We formulate this operation as
a structured layer relying on mesh-laplacian regularization
and show that it can be trained in an end-to-end manner.
We finally introduce a per-sample numerical optimisation
approach that jointly optimises over mesh displacements and
cameras within a video, boosting accuracy both for training
and also as test time post-processing.

While relying exclusively on a small set of videos collected
per category for supervision, we obtain state-of-the-art re-
constructions with diverse shapes, viewpoints and textures
for multiple articulated object categories.

1. Introduction
Monocular 3D reconstruction of general articulated cate-

gories is a task that humans perform routinely, but remains
challenging for current computer vision systems. The break-
throughs achieved for humans [3, 17, 10, 47, 30, 22, 31, 16,
4] have relied on expressive articulated shape priors [27] and
mocap recordings to provide strong supervision in the form
of 3D joint locations. Still, for general articulated categories,
such as horses or cows, the problem remains in its infancy
due to both the lack of strong supervision [55] and the in-
herent challenge of representing and learning articulated
deformations for general categories.

Recent works have started tackling this problem by re-
lying on minimal, 2D-based supervision such as manual
keypoint annotations or masks [43] and learning morphable
model priors [43, 19, 18, 9] or hand-crafted mesh segmen-

Figure 1: We tackle the problem of monocular 3D recon-
struction for articulated object categories by guiding the
deformation of a mesh template (top) through a sparse set
of 3D control points regressed by a network given a single
image (middle). Despite using only weak supervision in the
form of keypoints, masks and video-based correspondence
our approach is able to capture broad articulations, such as
opening wings, motion of the lower limbs and neck (bottom).

tations [24]. In this work we leverage the rich information
available in videos, and use networks trained for the 2D tasks
of object detection, semantic segmentation, and optical flow
to complement 2D keypoint-level supervision.

We make three contributions towards pushing the enve-
lope of monocular 3D object category reconstruction, by
injecting ideas from structure-from-motion, geometry pro-
cessing and bundle adjustment in the task of monocular 3D
articulated reconstruction.

Firstly, we draw inspiration from 3D vision which has
traditionally relied on motion information for SFM [38, 11],
SLAM [21, 29] or Non-Rigid SFM [39, 8, 7]. These
category-agnostic techniques interpret 2D point trajectories
in terms of an underlying 3D scene and a moving camera. In
this work we use the same principle to supervise monocular
3D category reconstruction, effectively allowing us to lever-
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Figure 2: Training overview: Two consecutive frames are separately processed by an encoder network that estimates the
camera pose, deformation and UV texture parameters per frame. The network regresses per frame a mesh V∗ by estimating
offsets to the handles H of the template shape and consequently solving the respective Laplacian optimization problem. The
predictions are supervised by per-frame losses on masks, appearance, and optionally keypoints as well as a motion-based loss
that compares the predictions of an optical flow network to the mesh-based prediction of pixel displacements (‘mesh flow’).

age video as a source of self-supervision. In particular we
establish dense correspondences between consecutive video
frames through optical flow and force the back projections
of the respective 3D reconstructions to be consistent with
the optical flow results. This loss can be back-propagated
through the 3D lifting pipeline, allowing us to supervise
both the camera pose estimation and mesh reconstruction
modules through video. Beyond coming for free, this su-
pervision also ensures that the resulting models will exhibit
a smaller amount of jitter and be more flexible when pro-
cessing videos, since the motion-based loss is sensitive to
inconsistencies across consecutive frames, and failure to
co-vary with moving object parts.

Secondly, we introduce a model for mesh deforma-
tions that allows for learnable, part-level mesh control, in-
herently accommodates mesh regularisation, and is back-
propagateable, providing us with a drop-in replacement to
the common morphable model paradigm adopted in [18].
For this we rely on the Laplacian surface deformation al-
gorithm [35], commonly used in geometry processing to
deform a template mesh through a set of control points (‘han-
dles’) while preserving the surface structure and details. We
observe that the result of this optimization-based algorithm
is differentiable in its inputs, i.e. can be used as a structured
layer. We incorporate this operation as the top layer of a deep
network tasked with regressing the position of the control
points given an RGB image. Our results show that we can
learn meaningful control points that allow us to capture limb
articulations while also providing a human-interpretable in-
terface that enables the manual post-processing and further
refinement using any available 3D software.

Thirdly we adopt an optimization-based approach to 3D

reconstruction that is inspired from bundle adjustment [40]:
given a video, we use the ‘bottom-up’ reconstructions of con-
secutive frames delivered by our CNN in terms of cameras
and handle positions as the initialisation for a numerical op-
timisation algorithm. We then jointly optimise the per-frame
mask and/or keypoint reprojection losses, and video-level
motion consistency losses with respect to the cameras and
handle variables, giving a ‘top-down’ refinement of our solu-
tion that better matches the image evidence. We show that
this serves as a method for improving the results at test-time
based on whatever image evidence can be obtained without
manual annotation.

We evaluate our approach on 3D shape, pose and texture
reconstruction on a range of different objects that exhibit
diverse articulations in nature. Our qualitative results show
that our method successfully captures intricate shape de-
formations across instances. Our ablation highlights the
importance of the employed self-supervised losses and the
tolerance of our method to the number of learnable handles,
while our qualitative results indicate that our method largely
outperforms the results of recent approaches.

2. Related Work
Pose, Texture and Articulation Prediction Our work

addresses the task of inferring the camera pose, articulation
and texture corresponding to an input image. Recent works
have addressed several aspects of this problem [18, 24, 23]
with varying forms of supervision. Earlier approaches like
CMR [18] treat the problem of 3D reconstruction from single
images using known masks and manually labelled keypoints
from single viewpoint image collections. Closer to our work
is the method of Kulkarni et al. [24, 23] named Canonical



Surface Mapping (CSM) which produces a 3D representa-
tion in the form of a rigid or articulated template using a
2D-to-3D cycle-consistency loss. The articulated variant of
CSM [23] achieves non-rigid deformation by explicitly seg-
menting 3D parts of the template shape manually set prior
to training the method. Finally, a line of recent research
works [46, 33] focus on the disentanglement of images into
2.5D surfaces with the simultaneous camera, lighting and
texture prediction without any ground-truth supervision.

Surface Deformation Deformation of 3D shapes is a
ubiquitous task and it is the core component of a successful
image 3D reconstruction. Recent works on monocular 3D
reconstruction [18, 9] treat deformation as offsets added to
mesh vertices. These offsets are conditioned on images that
are fed as input to deep neural networks. Plainly relocating
vertices gives rise to potential surface distortions or corrupt
features. Furthermore, this mechanism can not be interpreted
or post-processed by a human modeller.

Detail-preserving deformations have been studied in the
geometry processing community [35, 34, 15, 14]. Among
the developed methods there is a specific subset that rely
on a sparse set of control points to achieve mesh deforma-
tion. Changing the location of the control points allows the
recovery of a deformed mesh as the solution of an optimiza-
tion problem [35, 34]. By revisiting the aforementioned
technique we derive a method on top of the Laplacian Defor-
mation [35] that is capable of learning the control points and
regressing their position in the 3D space.

Video-based supervision Video has been commonly
used as a source of weak supervision in the context of dense
labelling tasks such as semantic segmentation [37] or dense-
pose estimation [28]. Drawing on the classical use of motion
for 3D reconstruction, e.g. [38, 11, 21, 29, 39, 8, 7] many
recent works [41, 1, 44] have also incorporated optical flow
information to supervise 3D reconstruction networks. Both
in the category-specific [41, 1] and agnostic [52, 42, 44]
setting, optical flow provides detailed point correspondences
inside the object silhouette which can aid the prediction of
object articulations and the reconstruction of the underlying
3D geometry. More recent works have leveraged videos
for monocular 3D human reconstruction [31] or sparsely-
supervised hand-object interactions [12] based on photomet-
ric losses. In this work we show the video is a particularly
effective source of supervision for our case, where we jointly
learn the category-specific shape prior and the 3D reconstruc-
tions. We also rely on robust, occlusion-sensitive optical flow
networks [51] which provide a stronger source of supervision
than photometric consistency, since they are both trained to
be solving the aperture effect in the interior of objects and
also recover large displacement vectors when appropriate.

Our approach is reminiscent of the principle of cycle
consistency [48, 53, 54], where the composition of two maps
is meant to result in the identity mapping (in our case the

lifting-based correspondence between two images and the
backward-flow between). We can understand our method as
being the dual of [53], where 3D synthetic data were used
to learn dense correspondences between categories; here
we rely on a pre-trained optical flow network to provide
correspondences that in turn help learn 3D object categories.

3. Method Description
Given an image our target is to perform ‘inverse graphics’,

namely infer the 3D shape, camera pose, and texture of the
depicted object. We have at our disposal a single representa-
tive mesh for the category (’template’), a set of 2D annota-
tions, such as keypoints or masks (potentially extracted by
neural networks, rather than manually constructed).

In our approach during training we use videos and train
per-frame inverse graphics networks while exploiting tempo-
ral information for supervision. At test time we can deploy
the learned networks on a per-frame level, but can also ex-
ploit temporal information, when available, to improve the
accuracy of our results through a joint optimization that is
inspired by bundle adjustment.

In this section we detail our method. We start by intro-
ducing our novel representation of an articulated object’s 3D
shape in terms of a differentiable, part-based deformation
model in Section 3.1. We then turn to the use of motion as a
source of supervision, introducing our motion-consistency
loss in Section 3.2. In Section 3.3, we introduce our fine-
tuning approach which allows us refine our bottom-up net-
work predictions with a more careful, sample-based opti-
mization, and cover other forms of weak supervision used by
our system. We elaborate on technical details in the supple-
mental material, and will share our code for reproducibility.

3.1. Articulated Mesh Prediction

Our aim in this work is to synthesise the shape of an
articulated object category by a neural network. While in
broad terms we adopt the deformable template paradigm
adopted by most recent works [18, 9, 26], we deviate from
the morphable model-based [2] modeling of shape adopted
in [18, 9, 26]. In those works shape is expressed in terms of
offsets ∆V of a template shape V∗ = ∆V +T, where ∆V is
delivered by the last, linear, layer of a shape decoder branch,
effectively modeling shape variability as an expansion on a
linear basis. Such models are well-suited to categories such
as faces or cars, but for objects with part-based articulation
such as quadrupeds we argue that a part-level model of de-
formation is more appropriate - which is also the approach
routinely taken in rigged modeling in graphics. Furthermore,
the linear synthesis model is non-interpretable or control-
lable by humans and requires careful regularization during
training to recover plausible meshes.

We propose instead a deformation model where a set of
learnable control points (or ‘handles’) deform a given tem-



Figure 3: Learnable Deformation Layer: The deformed
mesh V∗ is the result of an optimization scheme forcing V∗

to retain the surface details of the template mesh while also
minimizing constraints imposed by learnable handles. The
optimization solution comes in a closed form, and can be
backpropagated through, providing us with a new layer.

plate so as to minimize its non-isometric deformation (i.e.
stretching or squeezing) and the network’s task is to regress
the positions of the handles. This model is controllable,
interpretable, and regularized by design, while as our ex-
periments show it yields systematically more accurate mesh
reconstruction results.

Our algorithm builds on Laplacian surface editing tech-
niques [35] which allow us to control a template mesh
through handles while minimally distorting the template’s
shape. We represent the 3D shape of a category as a trian-
gular mesh M = (V, F ) with vertices V ∈ RN×3 and fixed
edges F ∈ ZNf×3. Our deformation approach relies on the
cotangent-based discretization L ∈ RN×N of the continuous
Laplace-Beltrami operator used to calculate the curvature at
each vertex of a mesh [36].

We obtain our K handles H1,...,K through a learnable
dependency matrix A ∈ RK×N

+ that is right-stochastic, i.e.∑
v Ak,v = 1, effectively forcing every handle to lie in the

convex hull of the mesh vertices by H = AV. The network’s
task is phrased as regressing the handle positions, denoted as
∆H . Based on those handles, we obtain the deformed mesh
V∗ as the minimum of the following quadratic loss:

V∗ = arg min
V

1

2
‖LV − LT‖2 +

1

2

∥∥∥AV − H̃
∥∥∥2

, (1)

where as in [35] the first term enforces the solution to respect
the curvature of the template mesh, LT, while the second one
penalizes the difference between the location of the handles
according to V and the target location, H̃ = AT + ∆H .
The Laplacian-based loss ensures that salient, high-curvature
details of the template shape are preserved, while also not

bending or stretching the mesh unnecessarily.
The stationary point of (1) can be found by solving the

following linear system:

(LTL + ATA)V = LTLT + ATH̃ (2)

Given that (LTL + ATA) is symmetric positive semi-
definite and sparse, the solution V∗ can be very efficiently
computed with conjugate gradients or sparse Cholesky factor-
ization. We rely on efficient solvers that cannot be currently
handled by automatic differentiation for backpropagating
through the linear system solution, and therefore provide the
explicit gradient expression in the supplemental material.

Backpropagating gradients through the Laplacian solver
allows us to both learn the association of the vertices to the
handles via the matrix A and also provide gradients back
to the handle position H̃ regressor. As such our method is
end-to-end differentiable and no manual annotation, segmen-
tation or rigging of the template mesh is required to represent
part-based articulations.

In practice we initialize the dependency matrix A based
on Farthest Point Sampling (FPS) [6] of the mesh, shortlist-
ing a set of vertices {vk}, k = 1 . . .K that are approximately
equidistant. For each vertex vk we initialize the k− th row
of A based on the geodesic distance of the vertices to vk:

A[i, k] =
exp(1/di,vk)∑
j exp(1/dj,vk

)
(3)

3.2. Motion-based 3D supervision

Having described our deformation model, we turn to the
use of video information for network training. We rely on
optical flow [51] to deliver pixel-level correspondences be-
tween consecutive object-centered crops. Unlike traditional
3D vision which relies on category-agnostic point trajecto-
ries for 3D lifting, e.g. through factorization [38], we use
the flow-based correspondences to constrain the mesh-level
predictions of our network in consecutive frames.

In particular, our network takes as input a frame at time
t and estimates a mesh Vt and a weak perspective camera
Ct. A mesh vertex i that is visible in both frames t and
t + 1 will project to two image points pi,t = π(Vi,t,Ct)
and pi,t+1 = π(Vi,t+1,Ct+1) where π amounts to weak
perspective projection. As such the displacement of point
pi,t according to our network will be ũi = pi,t+1 − pi,t.

This prediction is compared to the optical flow value
ui delivered at pi,t by a pretrained network [51] that we
treat as the ground-truth. We limit our supervision to image
positions in the interior to the object masks and vertices
visible in both frames; vertex visibility is recovered by z-
buffering, available in any differentiable renderer. We denote
the vertices that are eligible for supervision in terms of a
binary visibility mask γ : {1, . . . ,Γ} → {0, 1}.



We combine these terms in a ‘motion re-projection’ loss
expressed as follows:

Lmotion =
1∑Γ

i=1 γi

Γ∑
i=1

γi ‖ui − ũi‖1 (4)

where we use the `1 distance between the flow vectors
for robustness and average over the number of visible
vertices to avoid pose-specific value fluctuations. Since
ũi = π(Vi,t+1,Ct+1)− π(Vi,t,Ct) continuously depends
on the camera and mesh predictions of our network, we see
that this loss can be used to supervise both the camera and
mesh regression tasks.

This loss obviously penalizes the cases where limb ar-
ticulation observed in the image domain is not reflected in
the 3D reconstructions, effectively forcing the 3D recon-
structions to become more ‘agile’ by deforming the mesh
more actively. Interestingly, we observed that beyond this
expected behaviour this loss has an equally important effect
on the camera prediction, by forcing the backprojected mesh
to ‘stand still’ in the interior of objects: even though different
camera poses could potentially backproject to the same ob-
ject in a single image, a change in the camera across frames
will cause large 2D displacements for the corresponding 3D
vertices. These are penalized more when compared to the
predictions of an optical flow system that has been trained to
regress small displacements in the interior of objects.

3.3. Optimization-based learning and refinement

The objective function for our 3D reconstruction task
combines motion supervision with other common losses in a
joint objective function:

Ltotal = Lmotion +Lkp +Lpixel +Lrigid +Lmask +Lboundary ,
(5)

capturing keypoint, pixel-level appearance, rigidity priors, as
well as mask- and boundary- level supervision for the shape;
the forms of the losses are provided in Sec 3.3.1, while we
omit the empirically-determined loss scaling for simplicity.

In principle a neural network could successfully minimize
the sum of these losses and learn the correct 3D reconstruc-
tion of the scene. In practice there are too many local minima
in neural network optimization, which is further exacerbated
in our weakly-supervised setting, where we are effectively
requesting the network to both recover and learn the solu-
tion to an ill-posed problem for multiple training samples
at the same time. This has been observed even in human
pose estimation [10, 22, 16, 25], where careful per-sample
numerical optimization was shown to yield substantial per-
formance improvements. Given that in our case we do not
know the shape prior or have access to mocap recordings
for supervision, it makes per-sample numerical optimization
even more critical.

In particular we use focused, per-sample numerical opti-
mization to refine the network’s ‘bottom-up’ predictions so
as to better match the image evidence by minimizing Ltotal
with respect to the per-frame handles and camera poses; if
the object were rigid this would amount to bundle adjust-
ment, but in our case we also allow the handles to deform per
frame. Our approach also applies to both videos and individ-
ual frames, where in the latter case we omit the motion-based
loss. At test-time, as in the ‘synergistic refinement’ approach
of [10], once the network has delivered its prediction for a
test sample (frame/video), we start a numerical ‘top-down’
refinement of its estimate by minimizing Ltotal using only
masks delivered by an instance segmentation network and
flow computed from the video if applicable. The approach
comes with a computational overhead due to the need for
forward-backward passes over the differentiable renderer
for every gradient computation (we use Adam [20] for 50
iterations).

Further attesting to the importance of per-sample opti-
mization, we note that we have also found a careful initial-
ization of the camera predictions to be critical to the success
of our system; as detailed in the Supplemental Material we
build on the camera multiplex technique [9], that we extend
further with the handle deformations, to train our system.

3.3.1 Loss terms

Keypoint reprojection loss, as in [24], penalizes the `1
distance between surface-based predictions and ground truth
keypoints, when available:

Lkp =
∑
i

‖ki − π (KiV,C)‖1 ,

where Ki is a fixed vector that regresses the semantic key-
point in 3D from the 3D mesh.

Texture Loss compares the mesh-based texture and the
image appearance

Lpixel = dist
(
Ĩ � S, I � S

)
,

after masking by the silhoutette S in terms of the percep-
tual similarity metric of [50], while as in [18] we enforce
symmetric texture predictions by using a bilateral symmetric
viewpoint.

Local Rigidity Loss, as in [19] aims at preserving the
Euclidean distances between vertices in the extended neigh-
borhood N (u) of a point u:

Lrigid = E
u∈V

E
u′∈N (u)

∣∣‖V (u)− V (u′)‖ −
∥∥V̄ (u)− V̄ (u′)

∥∥∣∣
Region similarity loss compares the object support com-

puted from the mesh by a differentiable renderer [32] to



Method mIoU PCK
CMR [18] 0.703 81.2
CSM [24] 0.622 68.5
A-CSM [23] 0.705 72.4
Ours

8 0.64 84.6
16 0.676 89.8
32 0.688 89.7
64 0.711 91.5

Table 1: Ablation of deformation layer on CUB: Even
when using only 8 points, our handle-based approach out-
performs all competing methods in terms of PCK, while
with more handles both the mIoU and PCK scores further
improve.

instance segmentations S provided either by manual annota-
tions or pretrained CNNs using their absolute distance:

Lmask =
∑
i

‖Si − frender(Vi, πi)‖

Chamfer-based loss penalizes smaller areas that are hard
to align, like hooves or tails:

Lboundary = E
u∈V
Cfg(π(u)) + E

b∈Bfg

min
u∈V
‖π(u)− b‖22,

where as in [7, 19] the first term penalizes points of the
predicted shape that project outside of the foreground mask
using the Chamfer distance to it while the second term pe-
nalizes mask under-coverage by ensuring every point on the
silhouette boundary has a mesh vertex projecting close to it.

4. Experiments
4.1. Model architecture

We use a similar architecture to CMR [18], using a
Resnet18 encoder and three decoders -one each for predict-
ing articulations, camera pose and texture. The articulation
prediction module is a set of 2 fully connected layers with
RK×3 outputs. In particular for texture prediction, we di-
rectly predict the RGB pixel values of the UV image through
a residual decoder [9]. The texture head is a set of residual
upsampling convolution layers that take as input the encoded
features of ResNet18 and provide the color-valued UV im-
age; we use Pytorch3D [32] as differentiable renderer. A
more thorough description of the individual blocks can be
found in the supplemental material.

4.2. Data

We report quantitative reconstruction results for objects
with keypoint-annotated datasets, i.e birds, horses, tigers and
cows. For a wide set of objects a dataset is collected, mainly

from available video datasets [5, 49]. All of the videos in our
datasets have been filtered manually for occluded or heavily
truncated clips that are removed from the dataset. Indicative
video samples are provided in the supplemental material; we
will make our datasets publicly available to further foster
research in this direction.

Birds We use the CUB [45] dataset for training and test-
ing on birds which contains 6000 images. The train/val/test
split we use for training and report is that of [18]. While this
dataset is single-frame, we use it to compare our deformation
module with prior works on similar grounds.

Quadrupeds (Horses, Tigers) We use the TigDog
Dataset [5] which contains keypoint-annotated videos of
horses and tigers. The segmentation masks are approximate
since they are extracted using MaskRCNN [13]. We also
drop the neck keypoint for both categories since there is a
left-right ambiguity in all annotations. For every class we
keep 14 videos purely for evaluation purposes and train with
the rest, i.e 53 videos for horses and 44 for tigers. For these
classes, the number of handles is set to K = 16.

Quadrupeds (giraffe, zebras and others) We use
Youtube Video Instance Segmentation dataset (YVIS) [49],
that contains videos for a wide variety of objects, to 3D
reconstruct more animal classes. The cow category is used
for evaluation against other methods and for the rest of the
classes we only provide qualitative results in the supplemen-
tary material due to the lack of keypoint-annotated data.

For all categories we downloaded template shapes from
the internet and downsampled to a fixed number of N = 642
vertices. For evaluation we use identical template shape and
keypoint annotations to those of [23] for all classes.

4.3. Results

4.3.1 Handle-based deformation evaluation

We start with the CUB [45] dataset where we use the exact
supervision of A-CSM [24]. We outperform the state-of-the-
art system on reconstruction [18] by a significant margin
in both mean Intersection over Union (mIoU) and keypoint
reprojection accuracy (PCK), while following their evalua-
tion conventions. We ablate in particular the effect of the
number of handles on the achieved 3D reconstruction in Ta-
ble 1. We observe that our results are outperforming previous
methods even with a very small number of handles, however
increasing the number of handles allows for improved perfor-
mance. We also provide qualitative results in Figure 6 where
we show that our method is capable of correctly deforming
the template mesh to produce highly flexible wings, while
the alternative methods barely capture open wing variation.
These results clearly indicate the merit of our handle-based
deformation layer.



Method Supervision
Training
Dataset Horse Cow Tiger

KP Mask Motion TigDog Pascal Pascal TigDog
CSM [24] X X P + I 59.0 46.4 52.6 -
ACSM [23] X X P + I 57.8 57.3 56.8 -
Ours, inference X X X TD 74.7 57.2 - 51.9
Ours, with refinement X X X TD 83.1 69.5 - 55.7
CSM [24] X P + I 44.7 49.7 37.4 -
ACSM [23] X P + I 58.1 54.2 43.8 -
Ours, inference X X TD + YV 42.5 31.6 44.6 28.4
Ours, with refinement X X TD + YV 61.3 54.9 53.9 32.5

Datasets: Pascal (P), ImageNet (I), TigDog (TD), YVIS (YV)

Table 2: Keypoint Reprojection Accuracy We report PCK accuracy (higher is better) achieved by recent methods [24, 23]
for three different objects. We also indicate datasets used to train each method alongside with their source of supervision.

Horses w/ LMotion w/o LMotion

mIoU PCK mIoU PCK
Inference 0.536 74.7 0.519 71.5
Mask refinement 0.691 79.5 0.691 79.5
Mask and motion refinement 0.631 83.1 0.675 72.5

Table 3: Ablation of motion- and optimization- based recon-
struction for horses.

Tigers w/ LMotion w/o LMotion

mIoU PCK mIoU PCK
Inference 0.538 51.9 0.52 49.0
Mask & motion refinement 0.76 55.7 0.64 54.0

Table 4: Ablation of motion- and optimization- based recon-
struction for tigers.

4.3.2 Motion- and Optimization- based evaluation

In Table 3, we perform an extensive ablation of the impact
of our motion-based supervision, and optimization-based
reconstruction for the category of horses. We consider firstly
the impact that motion-based supervision has as a source
of training (left versus right columns). We observe that
motion supervision systematically improves accuracy across
all configurations and evaluation measures.

When optimizing at test time as post-processing we ob-
serve how the terms that drive the optimization influence the
final results: when using only masks we have a marked in-
crease in mIoU, and a smaller increase in PCK, while when
taking motion-based terms into account as well the increase
in mIoU is not as big but we attain the highest improvement
in PCK. We visualize in Figure 4 the mean shape of the
horse along with the first 3 common deformation modes.
The same pattern is observed for the Tiger category in the
smaller ablation Table 4.

4.3.3 Comparisons on more categories

In Table 2 we report results on more categories where we
have been able to compare to the currently leading ap-
proaches to monocular 3D reconstruction [18, 24, 23]. We

Figure 4: Learned Deformations Visualization of the pre-
dicted deformations by depicting the mean shape in the cen-
ter and the first 3 modes obtained by PCA on the handle
estimates obtained across the dataset.

note that several of the datasets used in these works are not
publicly available (e.g. Imagenet post-processed images for
the relevant categories), as such our training data are not
directly comparable. Still we note that we use a very small
number of videos (53 for horses, 44 for tigers, 24 for cows)
compared to the thousands of images available in Imagenet
or the hunderds in Pascal used by the existing approaches.

Starting with the comparison on horses for the case where
keypoints are available, we observe that our inference-only
method has a clear lead when testing on the TigDog dataset
(the other methods have not been trained on TigDog), while
optimization results in a further boost. When tested on Pas-
cal (our system was not trained on Pascal nor ImageNet),
our inference-only results are comparable to the best, while
optimization gives us a clear edge. For cows we did not
have videos with cow keypoints, as such we did not train
our approach on it, while for tigers we only report our own
method’s results since it has not been possible to train models
for the existing methods.

Turning to results where we do not use keypoints, we
observe that our method outperforms both CSM and ACSM



Figure 5: Quadruped reconstructions of our proposed method. We provide renderings of the 3D reconstruction using the
estimated camera pose, a different viewpoint and the texture reconstruction.

CMR Ours CMR Ours CMR Ours

Figure 6: Bird reconstructions For each input image we provide the results of CMR [18] alongside the proposed method.

when used in tandem with post-processing optimization, but
overall we observe a larger drop in accuracy compared to the
results obtained when keypoint supervision is available. As
we show in the supplemental material, this may be due to the
large flexibility of our deformable model, which manages to
“overfit” to the mask rather than performing the appropriate
global, rigid transforms. For the case of cows we observe
that even though our model was never trained on Pascal data,
it outperforms the mask-supervised variants of both CSM
and ACSM.

A pattern that is common for both sets of results is that
post-processing optimization yields a substantial improve-
ment in accuracy. As our qualitative results indicate in Fig-

ure 5 and the Supplemental, this is reflected also in the large
amount of limb articulation achievable by our model. Failure
cases, provided in the supplementary material are predomi-
nantly due to wrong global camera parameters such as scale,
which we attribute to the small diversity of appearance in our
limited set of videos. We anticipate further improvements
in the future by combining diverse images from static and
strong, motion-based supervision from dynamic datasets. Fi-
nally, in some cases our model fails to predict good textures
commonly for moving parts of quadrupeds like the legs.

5. Conclusion
In this work, we presented a learning framework for

monocular reconstruction that combines ideas from deep



learning and geometry for the reconstruction of highly non-
rigid objects while delivering interpretable and controllable
deformation representations; we anticipate that the proposed
framework will be useful for tasks such as graphics, AR,
or robotic interaction with highly articulated animate object
classes.
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